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Analysis of dynamics in a parametrically damped pendulum
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For the parametrically damped pendulum exhibiting chaotic transients, the critical values of various
parameters are determined from the calculation of Floquet multipliers at finite truncations of the har-
monics. The transient long-term behavior is related to a Floquet multiplier near zero. Dynamical folia-
tions are used to understand basin boundaries and attractor remnants.

PACS number(s): 05.45.+b

I. INTRODUCTION

Transient phenomena are diverse in chaotic dynamics.
In an early work of Levinson on the Van der Pol equation
[1] the complex transient response due to the existence of
competing attractors was studied. Another type is repeti-
tive bursts of chaotic motion known as intermittency [2].
When a strange attractor collides with an unstable
periodic orbit (or its stable manifold), a sudden qualita-
tive change accompanied by a transient behavior also
occurs, which is called a crisis [3].

Generally, a long-term transient is related to an orbit
of critical stability, the Lyapunov exponent of which van-
ishes. A simple example is the “critical slowing down” at
a period-doubling bifurcation point. For the three types
of intermittency studied in Ref. [2] the orbits of critical
stability are simple periodic orbits. For the crisis such
orbits are orbits of heteroclinic or homoclinic tangency.
The orbit of critical stability is essential to understanding
the transient dynamics of systems.

Recently, the transient chaos in a parametrically
damped pendulum was studied numerically by using the
cell-mapping method [4]. In this paper we present some
analytic discussions of the problem. The model con-
sidered in Ref. [4] is described by

2
iid—thrQ—l[1+esin(Qt)]%t2+sin9=O , (1
where parameter Q =18.33 [4], but the other two, € and
Q, are adjustable. The equation may be written as

2
m2i;t—f+q[1+esin(2z>]‘;—f+smo=o )

by the transformation

Q €
4 q 2 Q ’ € 2 ’ (3)
where the factor 2 in the argument of the sine function
has been introduced for convenience. This equation al-
ways possesses the particular solution 6=6=0, which,
however, need not be stable against small perturbations.
The transient dynamics associated with this orbit was
studied in Ref. [4]. The stability boundaries of this sta-
tionary solution were discussed with the method of
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Lindstedt-Poincaré perturbation in Ref. [5], where well-
behaved dynamical properties of the system were found.

In this paper we shall perform a different analysis of
the dynamics of the system. In the next section we deter-
mine the stability boundaries of the orbit 6=6=0 based
on the Floquet theorem. In Sec. III we use a Floquet
multiplier to describe the transient lifetime. In Sec. IV
we construct basin boundaries and attractor remnants
with invariant manifolds. We then briefly discuss the bi-
furcation behavior of the system in Sec. V. Our analysis
uses a geometrical method based on dynamical foliations
which are a generalization of invariant manifolds. This
method provides a better understanding of the dynamics
than the intuitive cell-mapping method of the phase
space. Finally, in the last section we make a few conclud-
ing remarks.

I1. STABILITY BOUNDARIES OF
THE STATIONARY SOLUTION

The linearized equation for a perturbation § around
the solution 6=6=0 reads

w*E+q(1+esin2t)é+£=0 . 4)

The boundary of stability may be determined from the
existence of a periodic solution for £ In Ref. [5] the
periodic solution of £ was determined with the method of
Lindstedt-Poincaré perturbation. Here we use the Flo-
quet theorem to treat the same problem. At the stability
boundaries a Floquet multiplier must vanish. Thus we
may assume that

E=A,+ 3 (A, cosnt +B, sinnt) . (5)

n=1

Inserting relation (5) into Eq. (4), by balancing harmon-
ics, we find that

(1—n’w?) A4, +ngB,

+qe[(n—2)4, ,—(n+2)4,,,)]=0,
(6
(1—n’0w®)B,—nqA,

+qge[(n —2)B, _,—(n +2)B, ,]=0,

where we have made the convention 4_,= A, and
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B_,=—B,. It can be seen that the solution to Eq. (6)
decomposes into two classes, one involving odd n»’s, and
another involving even n’s. No nontrivial solution exists
for the latter, so we consider only odd n. For the lowest-
order approximation we truncate Eq. (6) at n =1. We

then have the following two equations:
(1—w*—qe)4,+¢B,=0,
)
(1_(02+q8)Bl _qA 1 =0.

The existence of a nontrivial solution requires the deter-
minant of the coefficients to vanish:

1—w?—qe q
—q 1—w’+ge =0, ®)
which gives
el=¢ WV (1-0?’+q*. ©)

The next approximation is obtained from the truncation
at n =3. From Eq. (6) four equations for 4,, 45, By,
and B, similar to Eq. (7) may be derived, and the condi-
tion for the existence of a nontrivial solution becomes

1—w?—gqe q —3q¢ 0
- 1—w?+gqc 0 —3qe
! 2 ! =0, (10)
qe 0 1—- 9% 3q
0 g€ -3¢ 1—90?
or

9(ge)*—[(1—90%)*+3(3¢)*—6(1 —w?)(1—90?)](ge)?

+[(1-0??+4¢*][(1—-90*)*+(3¢)*]=0, (11)
from which €?), a higher approximation of the critical
value for €, may be found. The result is shown in Fig. 1,
which is very close to the curve determined in Ref. [4] by
directly integrating Eq. (1).

For 2=1.5, the value considered in Ref. [4], we have
calculated €, for successive truncations. The results are

€.=21.48 for the truncation at n =1,
€.=17.0826 at n=3,

€.=17.1818 at n=5,
€.=17.1805996 atn=7.

We have also obtained €, =17.1806 by numerically com-
J

FIG. 1. The boundary of stability of the solution §=6=0 for
the parametrically damped pendulum.

puting the eigenvalues, which are —1.00004196 and
—0.79585040 at e=¢,. Thus we estimate that
€.,=17.1806, which is an improvement on the value
€, =17.2 given in Ref. [4].

The negative sign of the eigenvalues involving critical
stability indicates that the period of the solution is dou-
bled with respect to that of the parametric term. By in-
troducing the factor 2 into Eq. (2), this period-doubled
solution can be readily treated. Compared with the
Lindstedt-Poincaré perturbation method the above
method is more convenient for obtaining higher-order re-
sults. In the next section we shall see that the same
method can be extended to deal with the transient phe-
nomena.

III. TRANSIENT LIFETIME

When € is not exactly set at €., from the Floquet
theorem, instead of the form (5) we generally have

E=e" Y (A, cosnt+B, sinnt) . (12)
n=1

where u is a Floquet multiplier. Correspondingly, the
equations of harmonic balance are now

[0*(pu2—n?)+1+qulAd, +n(2u+q)B,+qe[u(B, .,—B,_,)+(n —2)4,_,—(n+2)4,,,]1=0,

[0 (@2 —n?®)+1+qu]B, —n(2u+q) 4, +qe[u( 4, _,—

When making the truncation at n =3, we obtain

(13)

An+2)+(n _2)Bn -2_(n +2)Bn+2]=0 .

1+ (u2—1)o?*+qu—ge 2u+q +uqe —3qe uqe
_ —(2u+q)+puqe 1+(u?—1)o*+qu+qe —uge —3q¢
Mp,e)= qe —uge 1+(u?—9)o’+qu 32u+gq)
UqE qe —3(2u+q) 1+(u?—9)o*+qu

(14)
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which, for p=0, reduces to Eq. (10). Up to the linear
term of u, we may write Eq. (14) as

M, (0, )(e—€,)+M,(0,e, )u=0, (15)

where

ME(O,EC)=———L8ME§€’€)

’
p=0,e=¢,

M, (0,¢,)=2MUE)
Iz oL

p=0,e=¢,

Generally, both M(0,e.) and M, (0,¢.) are not vanish-
ing, so that

LEE—E, . (16)

The argument does not rely on the truncation made, so
relation (16) is generic. We have numerically computed
Floquet multipliers at Q@=1.5. The branch to which
1. =0 belongs is shown in Fig. 2.

Around €, the long-term behavior of the system should
be described by the Floquet multiplier close to zero. As in
Refs. [4] and [5], we choose the Poincaré section at
t =2nw/Q for Eq. (1). In the Poincaré section two direc-
tion fields [6] may be constructed as follows, one for the
forward dynamics, and the other for the backward. Con-
sider a cluster of points on a circle surrounding the initial
point of an orbit. In general, after a number of iterations
of the forward Poincaré map, the circle is stretched into
an ellipse around some final point due to the dynamical
instability. If we fix this final point and increase back-
wards the length of the orbit, the major axes of such el-
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FIG. 2. Plot of the Floquet multiplier u vs e—¢..

lipses approach a limit direction, which may be called the
backward direction of that given point. For most cases of
interest there exists a field of the backward direction [6].
The integral curves of the fields form the backward folia-
tions, which, for an unstable periodic orbit, are just the
unstable invariant manifolds. Similarly, we can construct
another class of foliations for the backward Poincaré
map. These two classes of dynamical foliations play an
important role in the construction of symbolic dynamics
for two-dimensional maps [7]. Generally, a segment of a
forward foliation will map to a contracted segment on
another forward foliation, and a segment of a backward
foliation will be expanded.

When € is very close to but still a little smaller than €.,
one of the two eigenvalues has an absolute value only a
little less than 1, and another has an absolute value much
less than 1. The latter is associated with the forward foli-
ations. Points near the origin 6=6=0 on the Poincaré
section, moving quickly along the forward foliations, ap-
proach the backward foliation passing through the ori-
gin. The backward foliation, being weakly contractive,
forms a “bottleneck” in the flow, as shown in Fig. 3. The
long-term behavior is governed by the eigenvalue with its
absolute value close to 1 or by the Floquet multiplier p
corresponding to it. Thus it is reasonable to claim that
the mean transient lifetime T is scaled as

T~u'~le—e.|7". (17)

Taking the reciprocal of the Floquet multiplier u as a
measure of the mean transient lifetime, we plot it as a
function of € in Fig. 4, which is consistent with the nu-
merical finding of Ref. [4] (cf. Fig. 9 there).

FIG. 3. Some forward and backward foliations near the ori-
gin #=60=0 at €=17.10. The origin is marked by the letter C.
The forward and backward foliations passing through the origin
are curves ACB and ECD, respectively. The point P ap-
proaches E on the backward foliation ECD rather quickly, and
then slowly reaches C, the stable fixed point.
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FIG. 4. The reciprocal of the Floquet multiplier plotted as a
function of € for =1.50.

IV. BASIN BOUNDARIES AND
ATTRACTOR REMNANTS

It is well known that a basin is related to forward folia-
tions, while an attractor is related to backward foliations.
Some forward and backward foliations are shown in Figs.
5 and 6 for € above and below €, respectively. Figures
5(a) and 5(b) are obtained by taking 5000 points on a seg-
ment of length about 0.01 along the stable and unstable
eigenvectors of the fixed point (8,6)=(0.0,0.0), and then
iterating them backwards and forwards, respectively.
When generating Fig. 6(a), we start from 20 points on the
line 6=, and calculate the forward dynamical direction
field directly step by step to find integral curves for folia-
tions. To guarantee the accuracy of integration, the step
size is adjustable as follows. At a given point P we calcu-
late the dynamical direction as described in the preceding
section, and pick up a point P’ along that direction at a
distance of the current step size away from point P. Then
we determine the direction at point P’ and the angle
formed by the two directions at points P and P’. If the
tangent of the angle is between +0.02, we accept point P’
as a new point of the foliation curve; otherwise we reduce
the step by half, and continue the process. When the step
size is less than 107%, we always take a step, no matter
what the angle is. After a step is made, we double the
step size to accelerate the calculation. For every initial
point we integrate the foliation curve until it reaches the
borders 6=t7 and =210, or until the total number of
points reaches 1000, according to whichever comes first.
When generating Fig. 6(b) we determine the backward
direction at point (6,0)=(3.0,0.0), take points near it in
that direction, and iterate them forward. Foliations usu-
ally change smoothly with parameters even at a sudden
change of attractor. For e<e, (Fig. 6) the long-term
behavior is mainly governed by the backward foliation.

Thus backward foliations represent the remnant of the at-
tractor. When the value of € crosses the critical €, from
above, a strange attractor as a set of backward foliations
gently becomes an attractor remnant due to the loss of
stability.

Below the left edge of the V-shaped region in Fig. 1
there may coexist four attractors: the stationary solution
6=6=0, one oscillating solution, and two rotating solu-
tions. The former two are a bistable pair, accompanied
by an unstable orbit of period 2 [5]. These three orbits

(a)
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FIG. 5. Some forward foliations (a) and backward foliations
(b) for €=20.00 and Q=1.5.
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correspond to a cubic-type curve in the bifurcation dia-
gram. The stable manifold of the unstable orbit forms
the boundary of basins for the two bistable solutions.
This basin boundary is shown in Fig. 7(a) for parameters
€=6.0, =1.7, and Q =18.33, which is generated from
a segment of the stable manifold of the unstable orbit in-
dicated by open circles. When the unstable orbit (or its
stable manifold) collides with the stationary solution

~10 W I 1 I L |
-3 =2 -1 ¢] 1

g

FIG. 6. Some forward foliations (a) and backward foliations
(b) for €=15.00 and Q2 =1.5. Backward foliations represent the
remnant of the destroyed attractor.

6=0=0, the latter will lose its stability and become un-
stable.

The two rotating or running solutions are each accom-
panied by an unstable rotating one. The stable manifolds
of the two unstable rotating solutions indicated by open
circles are shown in Fig. 7(b) at the same parameters as

(a)

T T T T T T T
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FIG. 7. The stable manifolds of unstable periodic orbits at
€=6.0, 2=1.7, and Q =18.33. The solid circle, triangles, rec-
tangles, and open circles indicate the stable orbit 6=6=0, the
oscillating solution, two rotating solutions, and the unstable or-
bits, respectively. (a) The stable manifolds of the unstable oscil-
lating orbit of period 2. (b) The stable manifolds of the two un-
stable rotating orbits of period 1.
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those in Fig. 7(a). They form the boundaries between
basins for the rotating and oscillating solutions. The
stable manifolds of the two unstable rotating orbits tangle
with that of the unstable oscillating orbit, forming a com-
plicated structure in the phase space of the Poincaré in-
tersection. Our figures of dynamical foliations agree with
the numerical results of the cell mapping method in Ref.
[4]. The construction of the basin boundary directly from
the forward foliations deepens our understanding of the
dynamics.

V. BIFURCATION BEHAVIOR

The bifurcation behavior of the parametrically damped
pendulum was studied in Refs. [4] and [5]. The segment
with Q>2 of the V-shaped stability boundary was
identified as a Hopf bifurcation. Along the line =2.40
in Fig. 1 we calculate the two eigenvalues for point
6=0=0, which are shown in Fig. 8. In that parameter
region both eigenvalues are real. There is no evidence for
a Hopf bifurcation which was claimed in Refs. [4] and
[5]. The bifurcation is just the usual period-doubling bi-
furcation.

In Ref. [5] the left boundary of parameter region for
chaotic motion with ) <2 was determined by Lyapunov
exponents. The routes to chaos were categorized as an
inverse boundary crisis for ©<1.66 and a period-
doubling route for Q> 1.66. We calculate the stability
boundaries for the symmetric and asymmetric oscillating
orbits of period 2, which are shown in Fig. 9. The stabili-
ty boundaries of orbits with period 4 and 8 are too close
to that of the asymmetric orbit of period 2 to be clearly
seen in the figure. In Fig. 9 we also show the stability
boundaries for the rotation orbits of period 2 and 4. The
results indicate that along the boundary of the chaotic re-
gion for Q>1.66 a period-doubling route does indeed
occur.

At the whole left branch of the V-shaped stability
boundary the stationary orbit 6=0=0 always loses its

-0.6 T T T T T T T T

T

A

-1.5 1 ! 1 1 1 1 1 1 !
15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20

€
FIG. 8. Plot of eigenvalues A, and A, vs € at 2=2.4 and
Q =18.33.
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FIG. 9. The stability boundaries%f the asymmetric and sym-
metric oscillating solutions of period 2 and those of the rotating
solutions of period 4 and 2, marked by 20A, 208, 4R, and 2R,
respectively.

stability by colliding with the unstable orbit of period 2.
When viewing the discrete map in the Poincaré section
by sampling at t=4nw/Q, the bifurcation may be
classified as a subcritical pitchfork bifurcation. There is
no significant difference concerning the loss of stability
for the stationary orbit above and below =1.66. The
difference in the dynamics is where the orbit is attracted
to after losing its stability. While for ) > 1.66 the attrac-
tor is trivial, for Q < 1.66 it is generally nontrivial. Since
a crisis is characterized by an orbit of homoclinic or
heteroclinic tangency, as mentioned above, there is no
evidence for an inverse boundary crisis.

VI. CONCLUSION
We have determined the stability boundary of the sta-
tionary orbit 6=60=0 by the Floquet theorem. The tran-
sient long-term behavior is closely related to a Floquet
multiplier near zero, which has been taken as a measure
of the lifetime. We have used dynamical foliations to un-
derstand basin boundaries and attractor remnants.
Dynamical foliations are an extension of invariant mani-
folds, directly reflect the geometrical structure of dynam-
ics, and thus give a better understanding of the dynamics
than the cell-mapping method.
We have also discussed the bifurcation behavior of the
system. For € >>1, Eq. (1) may be approximated by
4’0
dt?
Instead of two parameters Q and €, the combination
Q "l is essential, and the system is then insensitive to
damping.

+Q_lesin(ﬂt)% +sind=0 .
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